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ABSTRACT

Azuz-Adeath, I.; González-Campos, C., and Cuevas-Corona, A., 2019. Predicting the temporal structure of the Atlantic
Multidecadal Oscillation (AMO) for agriculture management in Mexico’s coastal zone. Journal of Coastal Research,
35(1), 210–226. Coconut Creek (Florida), ISSN 0749-0208.

The influence of global-scale modes of climate variability on Mexico’s coastal zone is investigated through the analysis of
the Atlantic Multidecadal Oscillation (AMO) effect on the long-term (decadal) behavior of three climatic variables
(rainfall, maximum and minimum temperatures) and agricultural production in 17 coastal states. Statistical methods to
predict the annual and decadal behavior of the AMO index were proposed, assessed, and used to predict the long-term
production phase (above or below the production trend) for the principal crops in the states where the highest correlation
among climate signals and agricultural production was found. The near-term (1 y to decades) temporal variability
structure of the AMO index was modeled by analytic functions (decadal component) and through discrete simulation
(yearly component), using the fractal dimension as a nonlinear measure to assess and mimic the irregularity of the
original time series with good results. For the decadal signals, significant correlations (p , 0.05) were found between
AMO and climatic variables in 13 of 17 states with rain and 14 of 17 states with maximum and minimum temperatures.
AMO and total production correlate in 12 of 17 states, and for specific crops, 34 of 51 values were significant. For the
purposes of coastal management, the long-term forecasts obtained may be good enough to propose adaptation measures
to climate variability related to agricultural activity in 5-year horizons, which closely correspond to periods of
government in Mexico.

ADDITIONAL INDEX WORDS: Modes of climate variability, agriculture, coastal management, Mexican coastal zone.

INTRODUCTION
Coastal zones are fragile and dynamic regions in which

oceanic, atmospheric, and terrestrial phenomena interact,

generating environments with high biological diversity and a

series of ecosystem services and functions that have allowed

the development of civilization throughout human history.

Taking into account different definitions of coastal zone, some

authors have established that over 50% of the world population

lives within 200 km of the coast (Hinrichsen, 1998), around 1.2

billion at a distance less than 100 km from the coast (Small and

Nicholls, 2003), and 625 million below the altitude of 10 m

(Neumann et al., 2015). These coastal areas also support a large

part of global productive activities such as agriculture, forestry,

industry, commerce, tourism, transport, aquaculture, and

mining; strategic facilities for defense, navigation, power

generation, and oil extraction; and are the most visited places

for recreational, leisure, and contemplation purposes (Cicin-

Sain and Knecht, 1998; Crossland et al., 2005; Kay and Alder,

2005).

Coastal systems, composed of elements, flows, and interac-

tions, both natural and anthropogenic, are continually dis-

turbed by processes of pollution (Vikas and Dwarakish, 2015),

urban expansion (Rodriguez and Brebbia, 2015), industriali-

zation, land-use changes, eutrophication (Sinha, Michalak and

Balaji, 2017), introduction of exotic species (Olenin et al., 2017;

Williams and Grosholz, 2008), overfishing, natural resource

exploitation, biodiversity loss (Ramı́rez et al., 2017), and even

bad governance practices, just to mention some stress factors,

which unceasingly affect the sustainability of the coastal

environment (Dronkers and Stojanovic, 2016; Sandberg,

2011; Turner and Bower, 1999). In addition to these factors,

coastal areas around the world are the places where the effects

of climate change are first manifested and where their impacts

will be strongest (Wong et al., 2014). The increase in

atmospheric temperature and in the upper layers of the ocean,

the accelerated sea-level rise, the acidification of the ocean,

changes in precipitation patterns, and the increase in intensity

and frequency of extreme meteorological events, among others

factors, will produce a continuous intensification in the

vulnerability levels of coastal areas (McFaden, 2007; Weissen-

berger and Chouinard, 2015).

In addition to the impacts of climate change, the natural

variability of the global climate system (i.e. atmosphere,

hydrosphere, cryosphere, land surface, and biosphere) strongly

influences the vulnerability and adaptive capacity of coastal

zones. Following the definition proposed by the Intergovern-

mental Panel on Climate Change (IPCC, 2013), climate

variability refers to variations in the mean state of the climate

on all spatial and temporal scales beyond that of individual

weather events. The climate system exhibits several large-

scale phenomena, such as the El Niño–Southern Oscillation,
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the Atlantic Multidecadal Oscillation (AMO), or the Pacific

Decadal Oscillation (PDO). Although these modes of variability

are not exactly periodic, they are oscillatory in character, and

their state is monitored using indices (De Viron, Dickey, and

Ghil, 2013). A mode of climate variability can be understood as

an underlying space–time structure with preferred spatial

pattern and temporal variation that helps account for the gross

features in variance and for teleconnections—correlations

between climate variables and climate index at different

spatial locations (Christensen et al., 2013).

One of the most prominent modes of climate variability in the

Northern Hemisphere is the AMO (Kerr, 2000), also called

more recently Atlantic Multidecadal Variability (e.g., Yeager

and Robson, 2017). This global signal was identified in four

long-term records (starting in 1854, 1856, 1880, 1881, and

ending in 1992) of the North Atlantic sea surface temperature

(SST) by Schlesinger and Ramankutty (1995) when observing

oscillations in the SST with periods of 65 to 70 years covering

the entire basin. Climate models and analysis of surface heat

fluxes have suggested that the AMO is an internal mode of

climate variability originating from changes in the circulation

of the Atlantic Ocean, but its origin is still debated (Gulev and

Latif, 2015; McCarthy et al., 2015; Zhang, 2017). The temporal

structure of the AMO index is shown in Figure 1. This index is

defined as the area-average SST anomaly over the North

Atlantic (0–708 N) minus the global mean SST. In the existing

record, it is possible to observe in the decadal structure three

positive or warm phases (two of them partial) with approximate

durations of 41, 34, and 22 years, and two negative or cool

phases (complete) with durations of nearly 32 years. The

spatial pattern, obtained by linearly regressing the SST

anomalies at each location on the AMO index, exhibits positive

values over the entire North Atlantic, with the largest

magnitudes (approximately 0.58C) south of Greenland (Deser

et al., 2010). This spatial pattern (e.g., Deser et al., 2010;

Hartman et al., 2013) extends and influences the Mexican

littorals (both east and west coasts) with positive anomalies in

the southern part, and negative anomalies in the Gulf of

California (West Coast) and Tamaulipas State (East Coast).

The AMO is linked with decadal or multidecadal climate

fluctuations, such as the winter climate of East China (Li and

Bates, 2007), Indian and Sahel rainfall (Zhang and Delworth,

2006), Atlantic hurricanes (Poore and Brock, 2011), European

and American summer precipitations and temperatures (Ionita

et al., 2013; O’Reilly, Woollings, and Zanna, 2017; Sutton and

Dong, 2012; Veres and Hu, 2013), Arctic temperatures (Chylek

et al., 2011), and river flows (Enfield, Mestas-Nuñez, and

Trimble, 2001; Kelly, 2004). In the coastal areas of the world,

the effects of the AMO and other modes of climate variability

have been observed, for example in the sea-level rise

acceleration along the European and American coasts (Ezer,

Haigh, and Woodworth, 2016; Karamperidou et al., 2013;

McCarthy et al., 2015), sediment accretion/erosion cycles and

beach morphology (Ortega et al., 2013; Tătui, Vespremeanu-

Stroe, and Preoteasa, 2014), number and intensity of tropical

cyclones (Briggs, 2008; Maxwell et al., 2013), abundance of

coastal species (Manta et al., 2017; Mieszkowska et al., 2014),

potential impacts on coastal upwelling (Cropper, Hanna, and

Bigg, 2014), and wave climatology and coastline evolution

(Dada et al., 2016; Duan et al., 2014; Seymour, 2011).

Climate change and climate variability present a profound

challenge to food security and development around the word

(Padgham, 2009; Rosenzweig and Hillel, 2008). In a study with

ample spatial coverage, Ray et al. (2015) established that

approximately 60% of the variations in maize, rice, soybean,

and wheat crop yields worldwide can be explained by climatic

variability. The impact of climate change and decadal temper-

ature trends on yields of the main global crops has also been

reported by Porter et al. (2014). Climate variability has been,

and continues to be, the principal source of fluctuation in food

production around the globe (Piao et al., 2010; Sivakumar, Das,

and Brunini, 2005; Zhao et al., 2005). Different mitigation and

adaptation strategies that consider the effect of climate

variability have been proposed for specific regions and products

(Ahmed and Stockle, 2017; Ali, Tedone, and De Mastro, 2017;

Ali and Erenstein, 2017; Anandhi, Steiner, and Bailey, 2016;

Daouda and Bryant, 2016; Deichert, Gedamu, and Nemomsa,

2017; Olayide and Tetteh, 2017).

The analysis of the response of specific crops to climate

change and variability has been the subject of studies in

different regions of the world. For Indonesia, Schroth et al.

(2014) identified potentially suitable cultivation areas for

Arabica coffee crops on the basis of local topography, climate

observations, and models and, for the same crop but in

Tanzania, Craparo et al. (2015) provided evidence of negative

climate impacts on it; several studies on the United States

showed decadal climate variability influence on wheat and

maize production (Kucharik and Ramankutty, 2005; Tian et

al., 2015) and, for East Africa, Ogutu et al. (2018) use a

probabilistic climate forecast for maize yield; the effects of

climate on cocoa production in Nigeria have been reported by

Oyekale, Bolaji, and Olowa (2009); the links between climate

variability and maize, millet, rice, and groundnuts in Ghana

were discussed by Abdul-Rahaman and Owusu-Sekyere (2017),

and for the same country, Williams et al. (2017) show the

impact of climate variability on pineapple production. In

Mexico, the relationship between climate and agriculture has

been studied mainly from the perspective of climate change

(AIACC, 2006; Arce-Romero et al., 2018; Gay et al., 2006;

Hellin, Bellon, and Hearne, 2014). The impacts of climate

variability on agricultural production have been addressed

Figure 1. Atlantic Multidecadal Oscillation (AMO) index (1856–2015).

Yearly values (dark gray) and 10-year smoothed values (bold line).
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from geographically localized studies like Granados, Soria, and

Cortina (2016) in Guanajuato or with specific products such as

maize in Oaxaca (Dilley, 1997; Rogé and Astier, 2015) and

Tlaxcala (Conde, Ferrer, and Orozco, 2006; Ziervogel et al.,

2006); however, to the best knowledge of the authors, there is

no work that analyzes the impact of the AMO on agricultural

production in all of Mexico’s coastal states.

From the point of view of coastal management (e.g.,

Scialabba, 1998), the practice of agriculture in coastal areas

can be perceived as a socially beneficial activity (e.g., provides

livelihoods for the coastal population, is a local source of

employment and nutrition), but also negatively from the

environmental point of view, as an element that encourages

the change of use of soil affecting biodiversity and ecosystem

services, or as a potential land-based source of contaminants—

agrochemicals, pesticides, and fertilizers—that many times

generate conflicts among coastal stakeholders and sectors

(Brugere, 2006; Gowing, Tuong, and Hoanh, 2006; Neumann,

Ott, and Kenchington, 2017). However, in countries such as

Mexico, where approximately 60% of agricultural production is

generated in coastal states and 74% of crops are rain fed (Table

1), the influence of weather, extreme meteorological events,

climate, water availability, and soil conditions is critical. In this

sense, it is essential to understand the effects and potential

impacts of climate variability on this economic resource, to take

adaptive measures and mitigation strategies that reduce

vulnerability, and, as far as possible, generate predictive

models that help decision making to deal with these long-term

phenomena.

Despite unresolved questions about origin and mechanisms,

several studies agree that the AMO’s variability is predictable

on multiyear timescales (Boer, 2004; Griffies and Bryan 1997;

Murphy et al., 2010; Seitola and Järvinen, 2014). Some

attempts to model, predict, or generate useful information

from the spatial and temporal structure of the AMO have been

presented using coupled global atmosphere–ocean models

(Chikamoto et al., 2013; Han et al., 2016; Wei and Lohmann,

2012), probabilistic approaches (Elsner and Jagger, 2006;

Suckling et al., 2017), and statistical methodologies (DelSole

and Tippett, 2009; DelSole, Tippett, and Shukla, 2011; Luo et

al., 2012; Yang et al., 2013). Comprehensive reviews of the state

of knowledge and progress made in understanding the

variability and predictability of the AMO and other modes of

climate variability can be found in Latif et al. (2006), Latif and

Keenlyside (2011), Meehl et al. (2009, 2014), and Yeager and

Robson (2017).

A central hypothesis of this research is the fact that near-

term (1 y to 1 decade) climatic variability can affect the

agricultural productivity of entire regions, directly modifying

rain and surface atmospheric temperature patterns and,

indirectly, through changes in humidity, soil moisture, nutri-

ent availability, pests, and presence/absence of pollinating

bees. Specifically, the aim of this paper is to analyze the

possible relationships between the temporal behavior of the

AMO (i.e. annual and decadal) and the time series of the

production of selected agricultural crops of commercial impor-

tance for the coastal states of Mexico. In accord with the results

obtained, it will seek to stablish simple predictive models for

the AMO’s temporal structure that allow them to anticipate the

behavior of agricultural products beyond seasonal periods with

the idea of supporting long-term decision making related to

coastal management.

METHODS
The following paragraphs will describe the study area, the

sources of information, and the methodology followed for the

analysis of climatic variables, the AMO index, the total

agricultural production of each coastal state of Mexico, and

the selected crops. In a detailed manner, the simulation process

followed to estimate the behavior of the AMO index will be

explained.

Study Area
Surrounded by the Pacific and Atlantic oceans and with two

semienclosed seas, the Sea of Cortez and the Gulf of Mexico

(which communicates with the Caribbean Sea), Mexico is

highly susceptible to the dynamics of the ocean–atmosphere

system. Mexico’s marine area is larger than its terrestrial area

and comprises an economic exclusive zone of 2,997,679 km2.

The Mexican coastal zone includes different climatic regions in

Table 1. Irrigated and rain-fed planted areas in Mexican coastal states.

Coastal State Name

Total Area

Planted (ha)

Rain-Fed

Area (ha)

Rain-Fed

Area (%)

Irrigated

Area (ha)

Irrigated

Area (%)

Baja California 217,823.82 27,708.74 12.72 190,115.08 87.28

Baja California Sur 42,964.25 — 0.00 42,964.25 100.00

Sonora 634,601.60 37,574.40 5.92 597,027.20 94.08

Sinaloa 1,269,627.30 368,751.17 29.04 900,876.13 70.96

Nayarit 383,846.64 299,128.68 77.93 84,717.96 22.07

Jalisco 1,569,812.69 1,280,634.00 81.58 289,178.69 18.42

Colima 158,951.43 86,930.76 54.69 72,020.67 45.31

Michoacan 1,152,215.94 694,829.88 60.30 457,386.06 39.70

Guerrero 890,979.00 784,327.27 88.03 106,651.73 11.97

Oaxaca 1,384,571.57 1,294,424.80 93.49 90,146.77 6.51

Chiapas 1,445,690.48 1,389,286.36 96.10 56,404.12 3.90

Tamaulipas 1,399,126.91 945,425.65 67.57 453,701.26 32.43

Veracruz 1,504,815.77 1,380,427.25 91.73 124,388.52 8.27

Tabasco 256,827.63 248,800.43 96.87 8,027.20 3.13

Campeche 314,812.03 285,697.43 90.75 29,114.60 9.25

Yucatan 755,414.13 689,220.05 91.24 66,194.08 8.76

Quintana Roo 139,454.94 132,356.87 94.91 7,098.07 5.09
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which there is a high biological diversity and numerous coastal

environments distributed along 11,122 km of coastline. There

are 17 coastal states with a territorial extension of 1,111,766

km2; of them, 11 are located on the West Coast (792,938 km2)

and 6 on the East Coast (318,828 km2). Approximately 156

municipalities have direct access to the sea (coastal counties).

This study analyzes the behavior of atmospheric surface

temperature, rainfall, and agricultural productivity of the 17

coastal states of Mexico. Figure 2 shows the study area.

Surface Temperature and Rain
For the annual and decadal analysis of rainfall (Rn) and

maximum (TMAX) and minimum (Tmin) temperatures of each

coastal state, monthly records from the Mexican National

Weather Service (SMN, 2017) were used for the period 1980–

2015. Monthly values of the three climate variables (i.e. Rn,

TMAX, and Tmin) were used to obtain the yearly average. The

yearly time series were detrended and smoothed using moving-

average techniques (10-y period) to extract the decadal

component for each climate variable signal. Detrending is a

key issue in climatic time-series analysis. Before selecting the

most appropriate technique, several methods were explored:

(1) analytical linear and nonlinear polynomial models (up to

fourth order); (2) spectral methods removing sequentially the

components with higher energy, and (3) empirical methods like

the empirical mode decomposition (Wu et al., 2007). Although it

is not possible to generalize the results to all the climatic

variables analyzed (rain, TMAX, and Tmin), considering the

mean square error (MSE), the determination coefficient (R2),

and the behavior of the residues in the long term, it was decided

to work with the nonlinear model of second order (see Figures

S3a,b,c and S4a,b,c in Supplementary Materials). Figure 3

shows an example of the methodology followed with all the

climatic variables; in this case the plot shows the minimum

temperature in the State of Campeche.

AMO Index
The historical record of monthly values of the AMO index was

obtained from the Earth System Research Laboratory of the

National Oceanic and Atmospheric Administration. The data

cover 1856 to date (see Figure 1) and the index was calculated

from the Kaplan SST record using the HadlSST1 data set

(Enfield, Mestas-Nunez, and Trimble, 2001; Rayner et al.,

2003). A spectral analysis of the complete signal was performed

Figure 2. Study area. Mexican coastal states (light color) and economic exclusive zone (bold line). Source of images: (a) Esri, DigitalGlobe, GeoEye, i-cubed, USDA

FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community; (b) CONABIO EEZ, and (c) INEGI state division. (Color for this

figure is available in the online version of this paper.)

Figure 3. Schematic diagram of time-series decomposition process. Bottom:

original minimum temperature signal (squares) and nonlinear trend

(continuous dark gray line). Top: detrended signal or residuals (circles)

and smoothed signal (continuous black line).
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to identify the most adequate frequency to extract the long-

term signal. For the purposes of this work, the frequencies with

higher energy correspond to those centered around a period of

10 years (see Figure S1 in Supplementary Materials). Several

smoothing and nonlinear filtering techniques were analyzed to

extract the decadal component of the AMO index used in this

study: double-smoothed moving average with 10-year period,

fast Fourier filter with 10-year period, fast Fourier low-pass

parabolic filter with a frequency f¼ 0.05, and fast Fourier low-

pass parabolic filter with amplitude threshold A ¼ 7.013.

Although in the first three cases the level of error was similar,

the lowest MSE value in all cases was that associated with the

moving-average technique (see Figure S2 in Supplementary

Materials).

The detrended, unsmoothed AMO index (ESRL-NOAA,

2017) part used during this study corresponds to the period

from 1980 to 2015. In this paper only one section of the total

AMO index was analyzed; for this reason, it was necessary to

extract the local trend and then proceed with the decadal

smoothing in the same way as for the climatic variables

described in the previous section to obtain the decadal

behavior.

Agricultural Production
The database of agricultural production was generated from

the official information provided by the Agricultural and

Fisheries Information Service (SIAP, 2017) of the Mexican

Ministry of Agriculture, Livestock, Rural Development, Fish-

eries and Food (SAGARPA). This study considered, for each

coastal state, the annual values of the total food production for

the period 1980–2015. Likewise, it defined the three main

agricultural products of each state from those that had the

highest commercial value in 2010. For these three selected

crops the annual production from 1980 to 2015 was considered

as well. All the agricultural time series were detrended and

smoothed according to the previously described methodology.

Because of the lack of data with the same spatial and temporal

coverage used in this research, the technological component

(e.g., new machines, irrigation techniques, automatization

processes, improvements in fertilizers, seeds, and pesticides )

and the specific needs of each crop studied (e.g., local soil and

humidity, solar irradiation, nutrient availability, seasonality of

day length) were not considered in this study. Table 2 shows

the crops selected in each Mexican coastal state and Figure 4

some selected products.

Data Analysis
The yearly time series of total agricultural production and of

the three selected products for each state were correlated with

the corresponding climatic variables (i.e. Rn, TMAX, and Tmin)

and with the AMO index (correlation matrix). In the same way

the analysis proceeded with all the smoothed series (decadal

behavior) to define the level of correlation between signals in

the long term.

The study tested the significance of the Pearson product-

moment correlation coefficients according to Sheskin (2011),

which computed the quantity t using the following equation:

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p ð1Þ

in which, r is the correlation coefficient between two variables

and n the number of data of each variable considered. The

calculated t value is contrasted with the corresponding critical

value from the t distribution with n� 2 degrees of freedom.

The significant (p , 0.05) correlation values among agricul-

tural products, climate variables, and AMO index were

analyzed and the time series associated with the highest

significant (p , 0.05) correlation coefficients between the AMO

index and agricultural products were then chosen for predictive

purposes.

Predictive Methodology
This analysis is based on the characteristics of the statistical

and probabilistic structure of the complete time series of the

AMO index (1856–2015), and its sole purpose is to generate

simple forecasts that are useful for coastal management, unlike

other predictive process-based models aimed at improving

scientific knowledge of the phenomenon itself.

To predict the temporal structure of the AMO index using

statistical methods, it was considered that the original signal

(ST) could be separated into two components: (1) decadal part

or low-frequency signal (SD) and (2) the yearly component (SY),

plus the error (e) according to the following equation:

STi ¼ SDi þ SYi þ ei ð2Þ

The decadal part was modeled by nonlinear analytic functions

using common best-fit procedures with error criteria such as

mean absolute percentage error (MAPE), mean absolute

deviation (MAD), mean squared deviation (MSD), or accuracy

ratio (ACRA) for acceptance (Tofallis, 2015). Two schemes were

proposed to model the nonlinear part: (1) a simple moving-

average method with a 9-year period (SD1i), and (2) an

oscillatory function (SD2i) defined by the next equation:

SD2i ¼ Asin p
STi � STcen

W

� �
ð3Þ

in which, A is the wave amplitude, STcen is the center of the

wave in time, and W is the width of the semiwave.

The yearly component forecast was done using discrete

simulation techniques (Law and Kelton, 1991). Following

Table 2. Agricultural production crops selected for this study.

Coastal State Name Product 1 Product 2 Product 3

Baja California Tomato Wheat Strawberry

Baja California Sur Tomato Chili Potatoes

Sonora Wheat Grapes Potatoes

Sinaloa Maize Tomato Chili

Nayarit Sugarcane Beans Mango

Jalisco Maize Sugarcane Pastures

Colima Lemon Sugarcane Pastures

Michoacan Avocado Maize Blackberries

Guerrero Maize Mango Pastures

Oaxaca Maize Pastures Sugarcane

Chiapas Maize Pastures Coffee

Tamaulipas Sorghum Sugarcane Maize

Veracruz Sugarcane Maize Oranges

Tabasco Banana Sugarcane Cocoa

Campeche Maize Sugarcane Soybeans

Yucatan Pastures Maize Lemon

Quintana Roo Sugarcane Maize Chili
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Golestani and Gras (2014), the nonlinear properties of the

original and simulated time series were used as an acceptance

measure. Specifically this study introduces the fractal dimen-

sion as a selection criterion among several discrete simulation

forecasts.

Once the best nonlinear function (SD) was defined, then it

was subtracted from the original AMO index to obtain the

residuals, in this case the yearly component (SY). Later on,

looking at the probability distribution function followed by

these residuals, it can be determined that the appropriate

discrete function to perform the simulation was established.

After a best-fit test for the residuals, their normality was tested

by a Kolmogorov–Smirnov test at a significance level of a ¼
0.05. Several runs of simulated random residuals (NSY) were

performed using the following equation (Azarang and Garcı́a-

Dunna, 1996):

NSYi ¼
X12

i¼1

ri � 6

 !
rþ l ð4Þ

in which, ri are independent uniform random numbers between

0 and 1, r the standard deviation, and l the mean of the normal

distribution followed by the residuals. According to Golestani

and Gras (2014), no significant improvement was observed for

the data considered when the number of runs was greater than

10; however, in this analysis the number of runs was extended

to 20.

The fractal dimension (D) of a time series measures how

irregular the given time series is. For each time series of

simulated residuals, their fractal dimension was calculated

using the Hurts exponent (H) with the relationship D¼ 2�H.

This study estimates H using the rescaled range analysis

according to Kale and Butar-Butar (2011). The estimation

procedure involves three basic steps: (1) for a time series over a

total duration N, the deviation of each piece of data is

calculated with respect to the total average (data � whole

mean). For these deviations the range R ¼maximum value�
minimum value is obtained and the rescaled range defined as

R/S, where S is the standard deviation of the data; (2) the next

step is to divide the original series into two equal parts N¼N/2

and repeat the procedure shown in (1) for the two segments.

The average value of R/S is then calculated for the two

segments. Then the entire procedure is repeated for N¼N/4, N

¼N/8, N¼N/16 and so on; (3) finally H can be estimated by the

slope of the best-fit line that is obtained when plotting log10(R/

S) vs. log10(N).

The resulting residuals were added to the nonlinear

functions defined to obtain the simulated series of the AMO

index. Five performance criteria of the simulated series were

used before proceeding with the forecasts: the similarity

between the mean and standard deviation of the original

AMO index and the simulated one; the difference between

maximum and minimum values among original and simulated

Figure 4. Selected agricultural products used in this study. Top row (from left to right): sugarcane field, chili crop, and wheat field. Middle row (from left to right):

potato farm, bean crops, and lemon trees. Bottom row (from left to right): mango, maize field, and banana plantation. Source of Images: SAGARPA (http://www.

sagarpa.gob.mx/saladeprensa/Banco/Forms/Miniaturas.aspx). (Color for this figure is available in the online version of this paper.)
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series; and finally the match between the fractal dimensions of

the original time series and the simulated one. In addition, the

MAPE, MAD, MSD, and ACRA measures of accuracy were

calculated (Tofallis, 2015).

Using the best hindcast for the long AMO index time series

(1856–2015), a 5-year forecast was performed (2015–2020) for

the AMO’s temporal structure. This forecast was used to

predict the agricultural production of specific products in

selected coastal states (highest correlations between AMO and

agricultural products) using as a predictor, in linear or

quadratic regression models, the simulated AMO index. The

measured values of agricultural production for 2016 (latest

information officially reported) were used to assess the yearly

predictive capacity of the model.

RESULTS
In this section the results obtained in the correlational

analysis carried out among the different variables considered

in all the Mexican coastal states are presented, for both annual

and decadal behaviors. The relationships obtained between the

climatic variables (Rn, TMAX, and Tmin) and the AMO, the

climatic variables and the agricultural production, and the

AMO and the agricultural production are taken into consider-

ation. Finally, the annual and decadal forecasts of the total

agricultural production and selected crops are presented.

Climatic Variables and AMO
The yearly values of the three climatic variables used in this

study, Rn, TMAX, and Tmin, show, in general, an increase in

their values for the period 1980–2015. Considering the linear

trends, six coastal states present significant (p , 0.05) slopes in

the precipitation level, going from 6.8 6 3.3 mm/y in Quintana

Roo to 21 6 4.5 mm/y in Colima; for the maximum temperature,

seven states present significant increases, from 0.0178C 6

0.0088C/y in Tamaulipas to 0.0918C 6 0.0128C/y in Oaxaca,

and, for the minimum temperature, 14 coastal states (82%)

show significant positive linear trends ranging from 0.028C 6

0.0088C/y to 0.138C 6 0.0188C/y. In 5 of the 6 states that had

significant increases in Rn, significant positive correlations (p

, 0.05) were observed with the AMO index using yearly data. It

was also found in the analysis that 6 of 7 states with significant

increases in TMAX correlated positively with AMO, and 9 of 14

with significant increases in Tmin correlate positively as well.

The total significant correlations observed using yearly

information between the climate variables and the AMO index

were 23 of 51 (45%), of which only one was negative (TMAX in

Campeche State).

The low-frequency signals (decadal behavior) show 41 of 51

(80%) significant (p , 0.05) correlations among climatic

variables and AMO index. In this case 23 were positive (the

majority with TMAX) and 18 negative (most of them with

Tmin). Considering the decadal structure of the data, all

coastal states feel the influence of the AMO—in a correlational

sense—at least in one climate variable, as it is possible to

observe in Table 3.

The AMO’s spatial pattern (see by example Deser et al., 2010)

corresponds very well with the sense of correlations obtained in

this study between AMO index and rain patterns. For the

northern half of the country, the AMO spatial pattern exhibits

negative SST anomalies on both coasts, with a positive patch in

the northern Pacific corner. In this analysis (see Table 3), the

northern half of the Pacific coastal states (until Michoacan)

shows negative correlations between AMO index and Rn except

Baja California State (positively correlated), which is located in

the northern corner of the Pacific littoral. For the East Coast

(Gulf of Mexico and Caribbean Sea) the AMO’s spatial pattern

shows a kind of horseshoe form with negative SST anomalies in

the north (Tamaulipas State) and in the south parts (Yucatán

and Quintana Roo states) of Mexico, with positive anomalies in

the central states (Veracruz, Tabasco, and Campeche). This

behavior is repeated almost exactly in the decadal correlational

analysis performed in this study between AMO index and Rn.

During the AMO positive phase (warm), the northern Mexican

states see less than normal rainfall, whereas the central states

see the opposite, which corresponds to what was observed by

Enfield, Mestas-Nuñez, and Trimble (2001) for the United

States. For the other phase of the AMO (negative or cool) the

pattern is reversed.

The locally detrended and smoothed values of the AMO index

(1980–2015) show a negative phase between 1983 and 1995 and

a positive one for the period 1996–2009. The behavior of the

climatic variables that presented the highest correlations with

the AMO can be observed in Figure 5 (standardized values). It

is important to note the marked similarity between the time

periods during which the variables analyzed are in a positive or

negative phase. For the selected states, Rn and Tmin are

negatively correlated with AMO, and with TMAX, positively.

Since some climatic variables do not react immediately to

changes in some major climate indices, like the AMO, the use of

a longer AMO series (extending the time series some years) and

a cross-correlation analysis between the series was thought to

be useful to see if there are better correlations at certain lags.

Considering the decadal behavior of AMO, Rn, TMAX, and

Tmin after a quadratic detrending in the climatic variables was

performed, the results showed a short-term (0 to 3 y) influence

of the AMO on Rn and TMAX in 13 of 17 coastal states, and for

Tmin in 11 of 17 states; a medium-term (4 to 7 y) influence in 4,

Table 3. Correlation coefficients between AMO index and climate variables

(decadal time series). Bold numbers represent significant values at p ,

0.05.

Coastal State Name Rain

Maximum

Temperature

Minimum

Temperature

Baja California 0.7785 �0.6597 �0.8295

Baja California Sur �0.3023 0.4152 �0.8952

Sonora �0.8612 0.7233 �0.3472

Sinaloa �0.6981 0.6671 �0.5759

Nayarit �0.2620 0.8703 �0.7025

Jalisco �0.7118 0.8039 0.5569

Colima �0.6218 0.8369 0.8594

Michoacan 0.7069 �0.7042 �0.4937

Guerrero �0.1398 0.8509 �0.6211

Oaxaca 0.7848 0.3241 0.3008

Chiapas 0.6136 0.6833 �0.5269

Tamaulipas �0.8390 0.9049 0.5972

Veracruz 0.7154 0.9345 0.8687

Tabasco 0.4895 �0.1213 �0.2321

Campeche 0.7990 �0.8324 �0.1954

Yucatan �0.8505 �0.0173 0.8707

Quintana Roo 0.0058 0.9212 �0.8789
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3, and 5 coastal states, respectively; and a long-term influence

(.7 y) in one state for TMAX and Tmin (see Table S1 in

Supplementary Materials).

Climatic Variables and Agricultural Production
Considering the yearly time series of total agricultural

production and three specific crops in each coastal state, as

well as the three climate variables (Rn, TMAX, and Tmin), 83 of

204 (41%) significant (p , 0.05) correlations were found (79

positive and 2 negative). Veracruz State—the longest state on

the East Coast—presented the highest number of correlations,

10 of 12, with r values ranging from 0.349 (orange production

and Tmin) to 0.558 (total production and Rn). Two states

(Tabasco and Michoacán) showed only 1 of 12 significant

correlations. The maximum correlation value was obtained

between strawberry production and Tmin in Baja California (r

¼ 0.861), followed by potato production and Tmin in Baja

California Sur (r ¼ 0.843). The climatic variable that showed

the highest number of correlations was Tmin (42 of 83),

followed by Rn (25 of 83).

With regard to the behavior of decadal time series, 128 of 204

(63%) significant correlations were found between the climatic

variables and agricultural production in the 17 Mexican coastal

states, 80 positives and 48 negatives. Rn and TMAX showed 44

significant correlations (25 positive and 19 negative each),

whereas Tmin presented 40 (30 positive and 10 negative). The

Table 4. Significant (p , 0.05) correlation coefficients obtained between

climatic variables and agricultural products in Mexican coastal states

(decadal component).

Specific Agricultural

Products by Location

Correlation Coefficients

Rn† TMAX Tmin

West Coast

Baja California

Tomato �0.4878 0.3325 �0.8813

Wheat 0.5923 �0.7895

Strawberry 0.5910 0.9320

Baja California Sur

Tomato

Chili 0.3487 �0.5843

Potatoes 0.6693 �0.6492 0.9598

Sonora

Wheat 0.5628 �0.7738 0.5699

Grapes 0.6097 �0.4009

Potatoes 0.5061 �0.8074 0.6037

Sinaloa

Maize �0.4226

Tomato �0.3964

Chili �0.5514

Nayarit

Maize

Beans

Mango 0.5615 �0.6664

Jalisco

Maize 0.4306

Sugarcane

Pastures 0.3967

Colima

Lemon �0.9180 0.6317

Sugarcane 0.7579 �0.8832 0.6165

Pastures �0.5212 0.5208

Michoacán

Avocado �0.6124

Maize 0.3756 0.6914

Blackberry 0.5149 0.6517 0.9050

Guerrero

Maize 0.7845 �0.7378

Mango 0.8086 �0.4541

Pastures 0.4123 �0.6688

Oaxaca

Maize 0.8115 �0.7440 �0.7601

Pastures 0.3997 0.5632

Sugarcane �0.8547

Chiapas

Maize �0.6487

Pastures 0.8056 0.4027 0.5774

Coffee 0.4156

East Coast

Tamaulipas

Sorghum �0.4844 0.5811 0.5866

Sugarcane �0.4046

Maize 0.6074 �0.8063 0.5629

Veracruz

Sugarcane 0.4177 0.6391

Maize 0.7190 0.5927 0.3839

Orange 0.7217 0.4852

Tabasco

Banana �0.4314 0.4564

Sugarcane �0.5330 0.5375

Cocoa �0.6703 0.9031

Campeche

Maize �0.7249 0.9365

Sugarcane �0.7312 0.6412 0.8731

Soybeans �0.8253 0.5536 0.9200

Table 4. Continued.

Specific Agricultural

Products by Location

Correlation Coefficients

Rn† TMAX Tmin

Yucatán

Pastures �0.6878

Maize 0.4423

Lemon �0.8313 0.6272

Quintana Roo

Sugarcane �0.3509

Maize 0.5636 0.4767

Chili �0.7626

†Rn¼ rain, TMAX¼maximum temperature, Tmin¼minimum temperature

Figure 5. Highest correlations between the decadal structure of AMO index

(continuous bold line) and climatic variables: (a) rain in Sonora state

(circles); (b) maximum temperature in Tamaulipas State (squares); and (c)

minimum temperature in Sinaloa State (triangles).
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crops that were most planted were (1) maize in 12 states; (2)

sugarcane in 8; (3) pastures in 6; and (4) chili in 3. The highest

positive significant correlations found for the West Coast were

strawberry and potatoes, with Tmin in Baja California and

Baja California Sur (r¼ 0.932 and r¼ 0.959, respectively), and

for the East Coast: maize and soybean with Tmin in Campeche

(r ¼ 0.936 and r ¼ 0.920, respectively). The most important

negative correlations were observed between lemon and rain,

and sugarcane and Tmax in Colima State on the West Coast (r

¼�0.918 and r ¼�0.993, respectively) and for the East Coast

between lemon and Tmax (r ¼ �0.831) in Yucatan and

sugarcane and Rn in Campeche (r ¼ �0.731). The complete

relationship of the significant correlations obtained for specific

agricultural products is presented in Table 4 (this table

excludes 35 significant correlations found between the total

production and the climatic variables; this information can be

seen in Supplementary Materials, Table S2).

Agricultural Production and AMO
The total agricultural production correlates significantly (p ,

0.05) and positively with the AMO index in all coastal states for

the yearly time series, with correlation coefficients ranging

from r¼ 0.498 in Veracruz State to r¼ 0.770 in Quintana Roo

State. The decadal component presents a different behavior;

seven coastal states (four on the West Coast and three on the

East) had significant positive correlations between total

agricultural production and the AMO index, and five coastal

states (four on the West Coast and one on the East) correlated

negatively. In this case the maximum correlation coefficients

were r¼0.798 in Baja California State and r¼�0.662 in Oaxaca

State (both on the West Coast).

Considering the three agricultural products defined in each

coastal state, the total number of significant correlations

obtained in the analysis was 42 of 51 (82%) for the yearly time

series and 34 of 51 (67%) for the decadal signals. The results are

shown in the Table 5.

For the yearly data, the highest positive correlation found

was in Veracruz State between sugarcane production and the

AMO index. This is an interesting result because—as was

stated before—this coastal state is the largest on the East Coast

and the cultivation of sugarcane (rain fed) involves the use of

large areas of land exposed to climatic conditions and

variability. Figure 6 show the behavior of the yearly time

series of sugarcane and the AMO index.

For decadal behavior, two crops were selected: lemon

production in Colima State (West Coast) and maize in

Tamaulipas (East Coast); both products are rain fed and they

represent around 9% to 13% of the total planted area in these

Table 5. Significant (p , 0.05) correlation coefficients obtained between

AMO index and agricultural products in Mexican coastal states (yearly and

decadal components).

Specific Agricultural Products

by Location Yearly Decadal

West Coast

Baja California

Tomato 0.4925 0.5173

Wheat 0.4977 0.4273

Strawberry 0.6140 �0.5177

Baja California Sur

Tomato 0.7182 0.6345

Chili 0.7144 0.7305

Potatoes 0.4807 �0.5722

Sonora

Wheat �0.3406

Grapes

Potatoes 0.6527

Sinaloa

Maize 0.6849 0.5111

Tomato

Chili 0.6986

Nayarit

Sugarcane 0.5949

Beans �0.3295

Mango 0.6041 0.8377

Jalisco

Maize 0.6999 0.4662

Sugarcane 0.6160 �0.4941

Pastures 0.7379 0.5263

Colima

Lemon 0.5725 0.8860

Sugarcane 0.4631 �0.4181

Pastures 0.6261 0.7082

Michoacán

Avocado 0.6592 �0.4365

Maize 0.6908

Blackberry 0.4575 �0.5335

Guerrero

Maize 0.7339 0.4612

Mango 0.5787 �0.3395

Pastures 0.6974

Oaxaca

Maize 0.6532 0.5733

Pastures 0.6219 �0.3728

Sugarcane �0.6617

Chiapas

Maize 0.7826

Pastures 0.6452

Coffee

East Coast

Tamaulipas

Sorghum 0.4928 0.5873

Sugarcane 0.4718 �0.3464

Maize �0.4104 �0.7560

Veracruz

Sugarcane 0.8098 0.6922

Maize 0.5615 0.4335

Orange 0.6156

Tabasco

Banana 0.6189 0.5115

Sugarcane 0.6172

Cocoa �0.4063

Campeche

Maize 0.6740

Sugarcane �0.6781

Soybeans 0.3525 �0.6244

Table 5. Continued.

Specific Agricultural Products

by Location Yearly Decadal

Yucatán

Pastures 0.5141 0.5399

Maize 0.3521

Lemon 0.6616

Quintana Roo

Sugarcane 0.6782

Maize 0.4742

Chili �0.4302
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states. These cases are presented in Figure 7, which shows

positive correlations between lemon and AMO (r¼ 0.886) and

negative relationships among maize production and AMO (r¼
�0.756).

Predicting Agricultural Production in Coastal States
The different tests performed to simulate and forecast the

temporal structure of the AMO index (long series) showed that

the best option was the use of forward-moving average with a 9-

year period for the decadal part of the signal (SD1i) plus the

best yearly component (SYi) obtained with discrete simulation

according to the accuracy criteria described in the methodology

section. Figure 8 shows the time series chosen for predictive

purposes. The fractal dimension (D) of the original AMO index

was D¼1.84; in the following two figures the term D represents

the fractal dimension of the simulated AMO index.

The second option for the forecast was the use, for the decadal

part, of the following equation:

SD2i ¼ 0:18sin p
STi � 1927

36

� �
ð5Þ

In this case, the yearly part was added in the same way

described in the preceding paragraph. Figure 9 shows the

behavior of this predictive scheme.

Using this information and the relationships found in the

correlational analysis among climatic variables, agricultural

production, and AMO index, it is possible to obtain long-term (5

y in advance) forecasts for total agricultural production or for

specific agricultural products, using as a predictor the

simulated AMO index, and through polynomial models the

response function, obtaining useful results for coastal manage-

ment regarding the planning process for agriculture develop-

ment in Mexico’s coastal zone.

Using the yearly simulated AMO index, the best relationship

found considering the accuracy ratio (Tofallis, 2015) was with

Figure 7. Decadal time series of lemon production in Colima State (squares),

maize production in Tamaulipas State (circles), and AMO index (bold line).

Figure 8. Original AMO index (squares) and simulated (hindcast and

forecast) AMO index (circles) used for the decadal simulated part; 9-year

moving-average smoothing method.

Figure 9. Original AMO index (squares) and simulated (hindcast and

forecast) AMO index (circles) used for the decadal simulated part; Equation

(5).

Figure 6. Yearly time series of sugarcane production (squares) in Veracruz

State and AMO index (circles) (r¼ 0.809).
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Baja California total agricultural production (30% error with

2016 data), which is shown in Figure 10.

The decadal behavior of specific agricultural products, which

possibly is the most relevant element of the study for planning

purposes in the context of coastal management, was predicted

using the decadal component of the simulated AMO index

(detrended and smoothed) as a predictor in linear models for

the coastal states in which specific crops showed significant

correlations above r¼ 0.7; the specific cases were chili in Baja

California Sur (r¼0.73), mango in Nayarit (r¼ 0.84), lemon in

Colima (r ¼ 0.89), pastures in Colima (r ¼ 0.71), maize in

Chiapas (r ¼ 0.78), maize in Tamaulipas (r ¼ 0.76), and

sugarcane in Veracruz (r¼0.70). The behavior of some of these

cases is shown in Figure 11.

As could be observed in Figure 11, the selected crops are

entering a period (greater than 5 y) of production below the

trend values. These results allow decision makers to establish

policies to substitute (maintain) crops or mechanisms to

discourage (or encourage) the planting of these specific

products during the periods of time estimated by the model

(at least to year 2020). Some policy criteria could be defined

looking at Table 6. The confidence in the prediction was

established by seeing the temporal structure of the last part of

the signal phase (qualitative element) plus the correlation

coefficient obtained between the long-term production and the

decadal simulated signal.

DISCUSSION
The results obtained in this paper showed a clear influence of

the AMO on three climatic variables (Rn, TMAX, and Tmin)

Figure 10. Total agricultural production in Baja California State. Observed

production (squares) and simulated production (circles) using a regressive

model with the simulated yearly AMO index as a predictor.

Figure 11. Observed (gray line) and predicted (bold line) long-term (decadal) production of specific crops. (A) Pastures in Colima State, (B) mango in Nayarit

State, (C) lemon in Colima State, and (D) maize in Chiapas State.
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measured at the regional level in Mexico (coastal states).

Considering the detrended and smoothed time series for the

period 1980–2015, it was observed for the northern half of the

country (excluding Baja California State) a negative correla-

tion between AMO index and Rn, which means that local

positive (negative) AMO phases are associated with less (more)

than normal rainfall; for the southern half of the country

(excluding Yucatán State) a positive correlation between AMO

index and Rn was observed, producing inverse effects to those

previously described. This geographically differentiated be-

havior responds to the spatial AMO’s pattern (see Deser et al.,

2010). Similar behavior between AMO and rainfall has been

reported in Arias, Mo, and Fu (2011) for North America;

Enfield, Mestas-Nuñez, and Trimble (2001) for the United

States; and in the simulation models generated by Lyu and Yu

(2017) and O’Reilly, Woollings, and Zanna (2017). An explana-

tion of the physical mechanisms underlying these interactions

was proposed by Knight, Folland, and Scaife (2006) considering

the multidecadal shift in the spatial position of the mean

intertropical convergence zone linked with variations in the

Atlantic SSTs, possibly related to the Atlantic meridional

overturning circulation (Yeager and Robson, 2017).

Decadal variations in TMAX and Tmin are also modulated by

AMO. For 9 of 17 coastal states significant negative correla-

tions were found between Tmin and AMO index. Positive

(negative) AMO phases were associated with decreases

(increases) in the minimum temperature. This fact is important

in the context of climate change because the minimum

temperature is the climatic variable that showed the greatest

increases in the annual analysis, with significant slopes in the

linear trend in 14 of the 17 coastal states. In this sense, the

synergy between global warming and climate variability—

expressed by means of the AMO index—is having a very

significant impact on the behavior of the Tmin; increases up to

48C can be observed in Oaxaca state for the period 1980–2015.

The TMAX experiences a behavior opposite to Tmin. This

variable (TMAX) correlates positively with AMO in 11 of 17

coastal states, having maximum correlation values on the East

Coast (Tamaulipas, Veracruz, and Quintana Roo). With yearly

data, only 7 states showed significant increases in the slope of

the linear regression model. With similar geographical char-

acteristics (access to Pacific and Atlantic coasts), for the United

States, Kurtz (2015) reported that the AMO was responsible for

the atmospheric temperature increase in large areas of the

country at different rates and with different influence among

regions, similar to what was observed for the coastal states of

Mexico in this study. Although the AMO is mainly an oceanic

signal, it leads to a significant atmospheric response such as in

surface air temperatures, which have been reported and

analyzed by several authors using proxy records, observational

data, and models (e.g., Enfield, Mestas-Nuñez, and Trimble,

2001; Knight, Folland, and Scaife, 2006; Polonskii, 2008;

Steinman, Mann, and Miller, 2015; Wang et al. 2013).

When observing the influence of the AMO on the climatic

variables of the West Coast (by means of the correlational

analysis) an anomalous behavior is observed with respect to the

neighboring states in the sense of the correlation coefficient in

Baja California and Michoacan in Rn and TMAX. A similar

behavior can be observed on the East Coast for the states of

Yucatan and Quintana Roo for the three climatic variables

analyzed. This fact suggests that the response of climate

variables is not only influenced by the temporal behavior and

spatial pattern of the AMO, but also the presence of regional

effects possibly associated with oceanic phenomena such as the

marked influence of the California current on the west part of

the state of Baja California, the warm pool in front of

Michoacán, or the dynamics of the Caribbean Sea over

Quintana Roo. Also, topography, geomorphology, littoral

extension, and natural vegetation cover could have an

important influence among contiguous states.

From a methodological point of view, it is important to note

the relevance of exploring nonlinear methods to extract trends

and different smoothing schemes to obtain the low-frequency

signals of time series of climatic variables. The use of linear

methods for the extraction of the trend, in this study, was only

justified for the agricultural series where there is a clear

ascending behavior, as in the total production where the values

of the coefficient of determination were generally high,

oscillating between R2 ¼ 0.529 and R2 ¼ 0.897 with a mean

value of R2¼ 0.743.

Increasingly, the global importance of the influence of

climate variability and change in the agricultural sector is

recognized around the world (Porter et al., 2014). Studies in

socially and environmentally highly vulnerable regions for

these phenomena, as in Africa (Stige et al., 2006), India (Khan

et al., 2009), or China (Liu et al., 2014), demonstrate

convincingly the importance of climate variability in local and

regional agriculture. The regional, long-term changes observed

in the rainfall and temperature patterns in response to the

influence of AMO observed in Mexico’s coastal states have

important consequences on agricultural production in general

and for specific crops in particular, and therefore have a high

social impact and are important for national food security.

The total agricultural production (considering all the crops)

in Mexican coastal states displays increased volumes and year-

to-year variation since 1980, possibly related to advances in

Table 6. Prediction of crop behavior for decision making in coastal management (decadal signals).

Coastal State Crop

Current

Phase

Years in

Current Phase

Expected Phase

2015–2020 Confidence

Correlation

Coefficient

Baja California Sur Chili Negative 7 Negative High 0.73

Nayarit Mango Negative 8 Negative High 0.72

Colima Lemon Negative 6 Negative Very high 0.88

Colima Pastures Negative 5 Negative Moderate 0.59

Chiapas Maize Negative 8 Negative High 0.73

Tamaulipas Maize Positive 10 Positive Moderate 0.61

Veracruz Sugarcane Negative 8 Negative Low 0.53
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technology (e.g., irrigation technologies, application of fertiliz-

ers and pesticides, improving crop genetics) or governmental

actions (e.g., subsidies, public policies, tax agreements, re-

placement programs for agricultural machinery), but there is

also a clear climatic influence. All the coastal states analyzed

showed significant correlations with AMO index at yearly

scale; the correlation coefficients were between r¼ 0.5 and r¼
0.8. For the decadal time series, significant correlations were

found in 12 of 17 coastal states, with values from r¼ 0.8 to r¼
�0.7. In the long-term context, rainfall is the main source of soil

moisture and probably the climatic variable that most

influences crop productivity, along with changes in tempera-

ture that can alter crop development (Rosenzweig and Hillel,

2008). In this study the influence of the AMO on these climatic

variables (Rn, TMAX, and Tmin) was demonstrated (see Table

3). The mechanisms through which these climatic variables act

on agriculture production should be the subject of detailed

studies at the regional level (for each coastal sate) and by type

of crop in the country.

The results obtained in this study show an important

influence of the AMO in the production of specific crops at

decadal scale in all coastal states. In more than half of the

coastal states, after removing the linear production trend, the

decadal component of the production signal (smoothed signal)

had a greater importance than the annual variation (residu-

als), defined in terms of the standard deviation of both signals.

On average the residuals explain 64% of the crop production

variability and the decadal signal explains 56% of the residuals

variability. The following products should be highlighted

because of the high levels of correlation obtained: chili in Baja

California Sur, mango in Nayarit, lemon and pastures in

Colima, maize in Chiapas and Tamaulipas, and sugarcane in

Veracruz (see Figure 11 and Table 5). Most of the significant

correlations found were positive (20 of 33), but there is no clear

relationship between agricultural products and cultivation

places that allows generalizations about how the AMO

determines the behavior of particular crops.

For the three products that were planted in most states

(maize, sugarcane, and pastures), the following patterns were

observed: (1) the maize presented positive correlations with the

AMO in all the states in which it was analyzed except

Tamaulipas; (2) sugarcane showed negative correlations except

in Veracruz; and (3) pastures responded with a positive

relationship to the AMO in all states where this crop was

analyzed, except in Oaxaca, where a low significant correlation

was found. A couple of unique examples should be mentioned:

(1) according to the results obtained, the AMO does not

influence significantly the production of coffee in Chiapas,

grapes in Sonora, and tomato in Sinaloa, the only three crops

without a significant correlation with the decadal AMO index;

one possible explanation for these last two products is the fact

that the level of agricultural technology used in those states is

among the most sophisticated in the country, which signifi-

cantly reduces the influence of climate; and (2) only in two

states were berry production considered, strawberry in Baja

California and blackberry in Michoacan. In both states these

products show negative correlations with the AMO (approxi-

mately r ¼ �0.52 in both states) and very high positive

correlations with Tmin (r ¼ 0.93 and r ¼ 0.91, respectively);

when the AMO is in positive (negative) phase, Tmin as well as

berry production decreases (increases). See Tables 4 and 5 as

references.

The use of predictive models of probabilistic/statistical

character has the advantages of simplicity, low cost, and

accessibility. On the other hand, it has the disadvantage of not

considering the underlying physics of the phenomena studied,

as the process-based climactic models do. Besides the consid-

erations about the filtering process and limited record lengths

reported by Vincze and Jánosi (2011), the proposed models to

simulate and forecast the AMO index (decadal and yearly

behavior) presented in this paper can be considered good

enough to propose actions related to agricultural activity in the

field of management of the Mexican coastal states (see Table 6).

Given that the behavior of the AMO influences—in a spatially

nonhomogeneous way—the climatic variables of the different

coastal states and these variables, in turn, determine to a

greater or lesser extent the behavior of specific crops, even

knowing, in a general way, the expected climate variability will

give an advantage to this productive activity so relevant to the

coastal states of Mexico.

The accuracy measures used to evaluate the performance in

hindcast (see Figures 8 and 9) showed greater similarity to the

simulated series using the moving average plus discrete

simulation for the yearly part (residual); as an element of

innovation, the use of the fractal dimension of the series to

validate the level of irregularity of the observed and forecasted

signal showed good results (D¼ 1.84 for the long AMO index

time series and D ¼ 1.86 for the simulated). The yearly

measured information for the AMO index in 2016 and 2017

showed a difference with the forecast of 25% (overprediction) in

2016 and 35% (underprediction) in 2017; similar error

percentages (around 30%) were found between the forecast of

selected crops and the measured values for 2016. The influence

of the AMO on agricultural productivity in the long term

(decadal scales) has a greater potential for use in coastal

management. Although the analysis carried out up to the year

2020 (see Table 6) showed good results, the behavior and the

correlation between the agricultural signals and the AMO

could be extended to longer periods of time (see Figure 11).

CONCLUSIONS
This research has proven that near-term climatic variability

(1 y to decades) represented by the AMO affects regionally the

agricultural productivity of the coastal states of Mexico and

several of the most important crops of each state.

The analysis performed at yearly and decadal scales showed

the influence of the AMO on the three climatic variables

considered (Rn, TMAX, and Tmin), Tmin being the climatic

variable with which greater numbers of significant correlations

presented using yearly values for the period 1980–2015 (9 of

17); at the decadal scale the three climatic variables showed

significant correlations with the AMO: 13 of 17 states with Rn

and 14 of 17 with TMAX.

In all coastal states the total agricultural production

correlates in a significant way with the AMO at a yearly scale

and, at a decadal scale, only in 12 of 17, with correlation

coefficients ranging from r¼0.8 in Baja California to r¼�0.7 in

Oaxaca. Considering the specific crops in each coastal state, 42
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of 51 correlated significantly with the AMO index at a yearly

scale and 34 of 51 at decadal. The number of significant

correlations found between the selected crops and the climatic

variables were 32 with Rn, 33 with TMAX, and 28 with Tmin

with decadal time series.

The mechanisms by which the AMO and the climatic

variables determine the production of the crops analyzed

should be the subject of detailed studies for each state and

product. These studies should consider the specific biological

aspects of each crop, the characteristics of the soil, and local

climatic conditions.

The simulated AMO index proposed in this paper generated

satisfactory results for its use in coastal management, with

errors of about 30% in the yearly forecast, and with the

potential to know several years ahead of time the phase in

which the different crops analyzed will be located.

As future research lines, the authors have begun the study of

the effect of other modes of climatic variability of the order of

decades relevant to fisheries, forestry, and agriculture in

Mexican coastal states, such as the PDO and the North

Atlantic Oscillation. Also, the use of other statistical method-

ologies like principal component analysis could be very useful

in this kind of research.
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